Tutkimuksessa tarkasteltiin vuosina 2009–2013 mitatun valtakunnan metsien 11. inventoinnin (VMI11) pienten ja varttuneiden taimikoiden tilaa ja laadittiin mallit kokonaisrunkoluvun, lehtipuuosuuden ja keskipituuden iänmukaisesta kehityksestä. Logaritmista taimikon tiheyttä ja keskipituutta kuvattiin lineaarisella regressiolla ja lehtipuuosuutta logistisella regressiolla. Vaihtoehtoisia malleja laadittiin eri lähteistä saatavan tiedon pohjalta. Vaihtoehtoina olivat 1) avoimien tietolähteiden maaperäkartta ja topografiset kosteustunnukset, 2) edelliset tunnukset VMI11-aineiston kasvupaikkatunnuksilla täydennettynä ja 3) ns. ”täydellinen tieto”, jossa edellisten lisäksi tunnettiin taimikonhoitotoimenpiteet ja niiden ajoitus. Kaikissa vaihtoehdoissa oletettiin tunnettavan uudistamistapa, pääpuulaji ja toimenpiteet vähintään tasolla muokattu/muokkaamaton ja ojitettu/ojittamaton. Vaihtoehdoissa 1 ja 2 taimikon tiheys kuvattiin hoitamattomien taimikoiden kasvupaikan potentiaalista tiheyttä kuvaavina tunnuksina (kokonaisrunkoluku ja lehtipuuosuus). Vaihtoehdossa 3 koko aineisto toimenpiteiden vaikutuksineen oli mallinnuksen kohteena. Avoimesta tiedosta VMI11-aineiston kasvupaikan kuvaukseen siirryttäessä taimikon runkoluvun selitysaste kohosi 16,6 %:sta 19,0 %:iin. ”Täydellisen tiedon” avulla runkoluvun selitysaste oli 22,5 %. Keskipituuden iänmukainen kehitys kuvattiin erikseen havu- ja lehtipuustolle vain vaihtoehdon 3 lähtötiedoilla ja niiden selitysasteet olivat 87 % ja 63 %. GTK:n maaperätunnuksia verrattiin VMI11-aineiston maaperätunnuksiin ja valuma-alueen topografiaan perustuvaa kosteusindeksiä verrattiin VM11-aineiston kasvupaikkaan ja topografiseen luokkaan. Topografinen kosteusindeksi osoittautui VMI11-aineiston topografista luokkaa merkitsevämmäksi selittäjäksi ja lopulta se oli selittäjänä kaikissa malleissa. Turvemaat mallitettiin yhdessä kivennäismaiden kanssa käyttämällä turvemaiden kasvupaikkaa ja ojitustilannetta kuvaavia tunnuksia. Turvemailla taimikon kokonaisrunkoluku lisääntyi nopeasti ojituksen jälkeen taimettumisolosuhteiden parantuessa. Taimikon tiheyden ja lehtipuuosuuden nopea kasvu hoitotoimenpiteen jälkeen oli selvästi erottuva ominaisuus. Laadittuja malleja voidaan hyödyntää sellaisenaan ennustamaan taimikon tiheyttä, havu- ja lehtipuuston määrää ja keskipituutta tai ne voivat olla perustana esim. laserkeilausta hyödyntäville kalibrointimalleille. Tutkimus liittyi MMM:n rahoittamaan hankkeeseen ”Taimikoiden tiedonkeruun kehittäminen”.