Tässä tutkimuksessa on pyritty kehittämään menetelmiä kuvioittaisella arvioinnilla tuotettujen vanhojen kuvioiden rajojen korjaamiseen numeeristen ortoilmakuvien automaattisen segmentoinnin avulla. Vanhoissa kuviorajoissa esiintyy paljon erityyppisiä sijaintivirheitä, jotka johtuvat suureksi osaksi siitä, että kuvioinnissa käytetty ilmakuva-aineisto ei ole ollut riittävän tarkkaa maastossa olevien kohteiden paikantamiseen. Lisäksi osassa kuvioista rajaus on muuttunut edellisestä inventointiajankohdasta esim. tehtyjen metsänhoitotoimenpiteiden takia.
Kuvioinnin korjaamisessa käytettiin kolmea vaihtoehtoista menetelmää. Ns. moodisegmenttimenetelmässä tutkimusalueelle luotiin suuri joukko pienehköjä segmenttejä, joille annettiin sen vanhan kuvion tunnus, jolle suurin osa segmentistä kuului. Kaikki samaan alkuperäisen kuvioinnin kuvioon kuuluneet segmentit yhdistettiin uudeksi kuvioksi. Toisessa menetelmässä muodostettiin automaattisesti uusi kuviointi, jossa uusien kuvioiden minimikooksi asetettiin 0,2 ha. Kolmannessa menetelmässä segmentit jaettiin kahteen pääryhmään: 1) todennäköisesti oikein rajatuilla alueilla oleviin segmentteihin ja 2) segmentteihin, jotka olivat todennäköisesti virheellisesti rajatulla alueella. Pääryhmässä 1 segmenteille palautettiin sen alkuperäisen kuvion numero, jonka alueella ne sijaitsivat. Pääryhmässä 2 segmentit yhdistettiin ilmakuvapiirteiden perusteella lähimpiin naapurikuvioihin tai segmentteihin.
Esitetyillä menetelmillä voidaan helposti korjata pienet siirtymät selväpiirteisessä kuviorajassa. Täysin automaattinen vanhan kuvioinnin virheiden korjaaminen ei kuitenkaan onnistu kuviointivirheiden komplisoidun luonteen vuoksi.
Tutkimuksessa tarkasteltiin ilmakuvasegmentteihin perustuvan kaksivaiheisen otannan luotettavuutta puustotunnusten ei-parametrisessa estimoinnissa. Aineistona oli kolmesta ilmakuvasta koostetun ortoilmakuvamosaiikin 10 alueelta mitattu segmenttiaineisto. Segmenttien lukumäärä oli 467 kpl, pinta-ala 163,8 ha ja keskimääräinen koko 0,351 ha. Segmentointi tehtiin ilmakuvan sävyarvojen perusteella. Segmentit paikannettiin ja niiden segmentti- ja puustotiedot tallennettiin tiedonkeruulaitteelle. Tiedonkeruulaitteessa käytettiin ilmakuva- ja segmenttiraja-aineistoa taustakarttoina sekä GPS-sijaintitietoa apuna paikantamisessa.
Segmenttien puustotunnusten estimaatit laskettiin segmenttien spektrisiä ominaisuuksia ja k-lähimmän naapurin (knn) menetelmää käyttäen ja niiden luotettavuutta tarkasteltiin ristiinvalidoinnilla. Käytännön sovellustilannetta jäljiteltiin simuloimalla otoksia sävyarvojen perusteella ositettuun segmenttiaineistoon. Otannan luotettavuutta tarkasteltiin ositteen keskitilavuuden keskiarvon keskivirheellä.
Estimoinnissa puustotunnusten suhteelliset keskivirheet vaihtelivat 36,8 %:n (keskiläpimitta) ja 156,3 %:n (lehtipuun tilavuus) välillä. Keskitilavuuden keskivirhe oli 55,1 %. Otannan simuloinnissa pienin keskitilavuuden keskiarvon keskivirhe 36,0 m3 ha–1 saatiin ositemäärällä 40 ja käyttämällä otannassa suhteellista kiintiöintiä.
Tarkasteltu menetelmä havaittiin jatkotutkimuksen arvoiseksi, vaikka tarkkuus ei tämän tutkimuksen perusteella vielä riitä sovellettavaksi käytännön metsätaloudessa.
Tutkimuksessa tarkasteltiin Landsat TM -satelliittikuvan käyttökelpoisuutta puustotietojen sekä toimenpide-ehdotusten estimoimiseksi metsikkökuvioille ja segmenteille ei parametrisella k-lähimmän naapurin menetelmällä (knn). Satelliittikuvan informaation ohella estimoinnissa hyödynnettiin vanhan inventoinnin mukaisia puustotietoja. Tutkimuksessa vertailtiin myös satelliittikuvan sävyarvoista eri tavoin laskettujen keskiarvojen tehokkuutta estimoinnissa. Estimoinnin tukiaineisto koostui 935 kuviosta ja kohdeaineisto 921 kuviosta.
Paras estimointitulos saatiin käyttämällä satelliittikuvan informaationa kuvioiden ydinosien keskiarvosävyjä ja kuvioiden reunaetäisyydellä painotettujen sävyarvojen keskiarvoja sekä vanhaa inventointitietoa. Puuston keskitilavuuden keskivirheeksi saatiin 42,1 % (51,6 m3 ha–1). Tarkimmin estimoitiin puuston keskiläpimitta (keskivirhe 32,3 % (5,4 cm)), sekä keskipituus (keskivirhe 34,1 % (4,6 m)). Nuorissa ja varttuneissa kasvatusmetsissä vastaavat keskivirheet olivat noin 10 %-yksikköä pienemmät kuin koko aineistossa keskimäärin. Segmenttiestimoinnissa suhteelliset keskivirheet olivat 10–15 %-yksikköä vastaavia metsikköestimointeja suuremmat.
Toimenpide-ehdotusten luokittelussa kasvatushakkuiden oikeinluokitusprosentiksi saatiin 61,3 % ja uudistamishakkuiden 64,1 %. Hoitotoimenpide-ehdotusten luokittelussa koko aineiston oikeinluokitusprosentti oli 71,2 %.
Tutkimuksessa testattu menetelmä tarjoaa nopean ja edullisen vaihtoehdon puustotunnusten ja toimenpide-ehdotusten tuottamiseksi esimerkiksi välialueiden suunnitteluun.
Tutkimuksen tavoitteena oli selvittää automaattisten ja puoliautomaattisten kuviointimenetelmien käyttökelpoisuutta ennakkokuvioinnissa. Tutkimuksessa vertailtiin visuaalisella kuvatulkinnalla, puoliautomaattisella menetelmällä ja kolmella eri segmentointiohjelmalla automaattisesti tuotettuja kuviointeja. Käytetyt segmentointiohjelmat olivat 1) Helsingin yliopistolla kehitetty automaattinen Winseg32-segmentointiohjelma, 2) Metsäntutkimuslaitoksessa kehitetty automaattinen segmentointiohjelma ja 3) Oy Arbonaut Ltd:n kehittämä puoliautomaattinen Stand Delineation Tool -segmentointiohjelma. Tutkimuksessa vertailtiin eri menetelmillä tuotettujen kuvioiden puustotunnusten homogeenisuutta ja kuviorajojen sijaintitarkkuutta. Puustotunnusten homogeenisuuden tarkastelussa visuaalinen ja puoliautomaattinen tulkinta osoittautuivat yhtä hyviksi menetelmiksi. Puoliautomaattisessa menetelmässä segmentointiohjelman tuottamia kuviorajoja jätettiin ennakkokuviointiin visuaalista tulkintaa enemmän. Kuviorajojen sijaintitarkkuus oli paras visuaalisessa tulkinnassa. Automaattiset menetelmät eivät tuota lopullista kuviointia, vaan visuaalinen tarkistus ja maastotarkistus ovat tarpeen.