Yksityismetsien metsävaratiedon keruuseen tarvitaan lähitulevaisuudessa kustannustehokkaampia menetelmiä. Tässä tutkimuksessa vertailtiin kaukokartoitusmenetelmien ja nykymuotoisen maastoinventoinnin luotettavuutta samoilla testialueilla. Testatut kaukokartoitusmenetelmät olivat: 1) fotogrammetrisiin puumittauksiin ja visuaaliseen puulajitulkintaan perustuva ilmakuvatulkinta, 2) puoliautomaattinen yksinpuintulkinta numeeriselta ilmakuvalta, 3) puoliautomaattinen yksinpuintulkinta ilmakuvalta ja laserkeilausaineistosta ja 4) laserkeilainaineiston korkeusjakaumaan perustuva menetelmä.
Laserkeilainaineiston korkeusjakaumaan perustuva menetelmä oli kokonaisuutena testatuista menetelmistä luotettavin. Tällöin metsikkökohtainen puuston kokonaistilavuuden suhteellinen keskivirhe (%) oli 18,8 ja 17,8 tutkimuksen kahdella testialueella. Menetelmällä saatiin jopa luotettavammat metsikkötason puustotunnukset kuin nykymuotoisella maastoinventoinnilla. Ilmakuvien fotogrammetrisella mittauksella ja visuaalisella tulkinnalla saatiin luotettavia tuloksia puuston keskipituuden ja -läpimitan suhteen, mutta puuston pohjapinta-alan ja tilavuuden arviointi tuotti menetelmällä vaikeuksia. Yhdistämällä laserkeilainaineisto puoliautomaattiseen yksinpuintulkintaan saatiin luotettavammat tulokset kuin soveltamalla tulkintamenetelmää ainoastaan ilmakuvaan.
Seuraavan metsävaratietojärjestelmän tiedonkeruu- ja ylläpitomenetelmät sisältävät kaukokartoitusperusteisia menetelmiä yhdistettynä kevennettyyn maastoinventointiin sekä metsävaratiedon jatkuvaa ylläpitoa ja laskennallista ajantasaistusta. Kaukokartoitusmenetelmien osalta vuosituhannen vaihteen jälkeen tehty tutkimus osoittaa, että luotettavimmat tulokset saadaan laserkeilainaineiston ja ilmakuvan yhdistelmällä, jolloin voidaan tuottaa myös puulajeittaisia puustotunnuksia.
Tutkimuksessa selvitettiin yksittäisten latvusten segmentointiin ilmakuvalta perustuvan puustotunnusten arviointimenetelmän tarkkuus. Puuston arviointiin kehitetty tietokoneohjelma rajaa puiden latvukset puoliautomaattisesti, minkä jälkeen se laskee puustotunnukset malliketjulla. Puun rinnankorkeusläpimitta ennustettiin latvusalan perusteella, pituus rinnankorkeusläpimitan perusteella ja tilavuus rinnankorkeusläpimitan ja pituuden perusteella. Metsikkötunnukset saatiin kuvion kaikkien segmentoitujen puiden keskiarvoina ja summina. Ohjelmassa oli myös opetettava puulajintunnistusalgoritmi. Runkoluvun, pohjapinta-alan ja tilavuuden estimaatit olivat reiluja aliarvioita, mikä johtui osittain siitä, että aineistossa oli useita puuston tilavuudeltaan erittäin suuria kuvioita. Menetelmä osoittautui jatkotutkimuksen arvoiseksi, vaikka menetelmän tarkkuus ei tämän tutkimuksen perusteella riitäkään metsäsuunnittelussa tarvittavien lähtötietojen tuottamiseen.